On the (De)homogenization of Sagbi Bases
نویسنده
چکیده
In this paper we study the relation between nonhomogeneous and homogeneous Sagbi bases. As a consequence, we present a general principle of computing Sagbi bases of a subalgebra and its homogenized subalgebra, which is based on passing over to homogenized generators.
منابع مشابه
A new algorithm for computing SAGBI bases up to an arbitrary degree
We present a new algorithm for computing a SAGBI basis up to an arbitrary degree for a subalgebra generated by a set of homogeneous polynomials. Our idea is based on linear algebra methods which cause a low level of complexity and computational cost. We then use it to solve the membership problem in subalgebras.
متن کاملOptimal Lower Bound for Generators of Invariant Rings without Finite SAGBI Bases with Respect to Any Admissible Order
)( was investigated. It turned out that only invariant rings of direct products of symmetric groups have a finite SAGBI basis, which is then, in addition, multilinear. Of course, it would be of interest to have such a strong characterization with respect to any other admissible order [4, 6]. To achieve this seems to be all but trivial. One step towards the understanding of the behavior of SAGBI...
متن کاملSAGBI Bases Under Composition
Our interest in the subject of this paper is inspired by Hong (1998), where Hoon Hong addresses the problem of the behavior of Gröbner bases under composition of polynomials. More precisely, let Θ be a set of polynomials, as many as the variables in our polynomial ring. The question then is under which conditions on these polynomials it is true that for an arbitrary Gröbner basis G (with respec...
متن کاملFactor-SAGBI Bases: a Tool for Computations in Subalgebras of Factor Algebras
We introduce canonical bases for subalgebras of quotients of the commutative and non-commutative polynomial ring. A more complete exposition can be found in 4]. Canonical bases for subalgebras of the commutative polynomial ring were introduced by Kapur and Madlener (see 2]), and independently by Robbiano and Sweedler ((5]). Some notes on the non-commutative case can be found in 3]. Using the la...
متن کاملSagbi Bases of Cox-Nagata Rings
We degenerate Cox–Nagata rings to toric algebras by means of sagbi bases induced by configurations over the rational function field. For del Pezzo surfaces, this degeneration implies the Batyrev–Popov conjecture that these rings are presented by ideals of quadrics. For the blow-up of projective n-space at n + 3 points, sagbi bases of Cox–Nagata rings establish a link between the Verlinde formul...
متن کامل